On Shaky Grounds: Carbapenem Use with Concomitant Seizure Disorders and Valproic Acid

Eric Poulin VCH-PHC Pharmacy Resident December 4, 2009

Outline

- Case
- Background
- Clinical Questions
- Review of Evidence
- Recommendation
- Monitoring
- Follow-Up

Learning Objectives

- To review the evidence behind carbapenem use with concomitant seizure disorders
- To understand the proposed mechanisms and clinical significance of the drug-drug interaction between meropenem and valproic acid

- ID: MH, 21 yo quadriplegic male, 75kg
- Brought to VGH ER Nov. 7 from George Pearson Centre (GPC)
- CC: Suprapubic pain
- HPI:
 - Increasing suprapubic pain, gross hematuria, fever, chills over past 2 days
 - Brought to ER from GPC

- PMH:
 - C2/C3 quad 2° to GSW 2006, ventilator-dependent
 - Partial motor and myoclonic sz disorder 2° to anoxic brain injury from GSW
 - Complicated history, ++ neurology consults, many trials of different medications
- SH:
 - Now lives at GPC subsequent to injury
- Allergies
 - Latex
 - Moxifloxacin (reaction: hepatitis)

- Medications PTA (at GPC):
 - Divalproex 250mg bid, 500mg qhs
 - Levetiracetam 1500mg bid
 - Clonazepam 1mg tid
 - Pregabalin 150mg bid
 - Oxybutnin 5mg bid
 - Buspirone 5mg bid (anxiety)
 - Multivitamin daily
 - Methylcellulose 1% ou i drop bid
 - Ciprofloxacin 500mg bid started Nov. 7

- PRN Medications PTA:
 - Dimenhydrinate 50mg im qid
 - Acetaminophen 650mg qid
 - Docusate 100mg q2h
 - Lorazepam 0.5-1mg q4h

Review of Systems at Admission

- Vitals:
 - T 38.2, HR 95, BP 120/55 RR 16 SpO₂ 93%
- CNS: GCS 15, unremarkable
- CVS: MAP = 70, unremarkable
- Resp: On A/C ventilation
- GI:Able to swallow, unremarkable
- GU:
 - U/O 30-40ml/hr, hematuria
 - increasing suprapubic pain

Review of Systems on Admission

• Labs:

Parameter	Nov. 7	Nov. 8
WBC (4-11)	5.8	36.1
Hb (135-180)	149	111
Plt (150-400)	82	101
INR (0.9-1.2)	1.1	1.1
SrCr (30-130)	54	36
Na (135-145)	138	146
K (3.5-5.0)	3.6	2.9

ICU Admission

- Patient admitted to ICU Nov. 9 (0400) for sepsis (suspected urosepsis) and query VAP/HCAP
- Started on broad-spectrum antibiotics
- Drew blood, respiratory, and urine cultures

Review of Systems on Admission

• Cultures:

Date	Site	Organism(s)	Sensitivity	Resistance
N7	Urine	Negative		
N7	Resp	Staph aureus	MSSA	Pen G
N8	Blood	Serratia marascens	Ceftriax/Cipro/Gent/Imi/ Septra	Cefaz
		Group B H. Strep Ceftriax/Pen G/Vanco		
		E. coli	Cefaz/Gent/Imi/Septra/ PipTaz	Cipro
		E. aerogenes	Ceftriax/Imi/Gent	Cefaz/Cipro/Septra/ PipTaz(Intermediate)
		Proteus mirabilis	Cipro/Ceftriax/Septra/PipTaz /Gent/Imi	Cephalex(Intermediate)
N10	Resp	Mixed GNB incl. Pseudomonas	No sensitivities given	
Pharm	nacy Sei	rvices	Vance	stallealth Srovidence

HEALTH CARE

Promoting wellness. Ensuring care.

Initial Medications in ICU

- Divalproex 250mg bid, 500mg qhs
- Levetiracetam 1500mg bid
- Pregabalin 150mg bid
- Folic acid 5mg, Thiamine 100mg, Multivitamin daily x 3 days
- Heparin 5000U sc q12h
- Ranitidine 150mg po bid
- Ipratroprium 250-500 ug q6h neb
- Salbutamol 2.5-5mg q6h neb
- Meropenem 1g iv q8h
- Vancomycin 1g q12h

Pharmacy Services

Pharmacy called regarding interaction

Case Drug-Related Problems

- MH is at risk of experiencing a seizure secondary to receiving a carbapenem antibiotic and would benefit from reassessment of his antibiotic therapy
- MH is at risk of experiencing a seizure secondary to a drugdrug interaction between meropenem and valproic acid and would benefit from reassessment of his antibiotic drug therapy
- MH is at risk of experiencing nephrotoxicity and ototoxicity secondary to receiving vancomycin without an appropriate initial assessment of renal function, and would benefit from monitoring of his vancomycin levels
- MH is at risk of experiencing a seizure secondary to not receiving clonazepam, and would benefit from receiving this drug
- MH is at risk of experiencing anxiety secondary to not receiving buspirone, and would benefit from receiving this drug

Goals of Therapy

- Resolve sepsis
- Treat infection
 - Address underlying cause
- Prevent reoccurrence of seizures
- Reduce mortality

Background - Drugs

- Meropenem
 - MOA: Bactericidal, time-dependent killing broad-spectrum β-lactam antibiotic, inhibits cell-wall synthesis
 - PK
 - A: Tmax ~1hr after infusion
 - D: Protein binding ~2%, Vd 12-20L, %CSF/Blood = 2-12
 - M: Extrarenally 20-25%
 - E: Cleared renally as 70% unchanged drug. T1/2 = 1hr, but can be 3.4-20hrs in renal dysfunction

Usual dose: 1gm iv q8h

Creatinine Clearance (mL/min)	>50	26-50	10-25	<10
Dose	1g q8h	1gq12h	500mg q12h	500mg q24h

Background - Drugs

- Valproic Acid
 - MOA: Mood stabilizer and anti-epileptic. MOA not completely understood, thought to be related to elevated GABA in brain
 - Usual dose: 500-1500mg/day divided od-tid
 - Therapeutic range: 350-700 umol/L
 - PK:
 - A: F = 80-90% depending on fasting state
 - D: Vd = $11L/1.73m^2$
 - Protein binding ~90%, concentration-dependent
 - M: Hepatic via conjugation (glucuronidation)
 - E: Cleared renally 70-80% as glucuronide metabolite, <3% unchanged

T1/2 = 9-16hr

Clinical Question 1

• Does imipenem predispose patients to a higher seizure risk than meropenem?

Carbapenems and Seizure Induction

- Proposed mechanisms:
 - Mutlifactorial, includes:
 - Ability to block GABA_A receptor
 - Action on other neuroreceptor complexes
- β-lactams are the most common antibiotic class associated with seizures
- Cilastatin alone has not been shown to produce seizures

Literature Search

- Databases searched:
 - Pubmed, Embase, MedLine, Google Scholar, and bibliographies of relevant articles
- Search terms:
 - Meropenem, imipenem, carbapenems, seizure, risk, safety
- Found:
 - 1 systematic review, discussing:
 - 3 RCTs
 - 1 prospective uncontrolled study
 - 4 retrospective analyses
 - Multiple case reports

Safety of Imipenem/Cilastatin in Neurocritical Care Patients

Hoffmann et al Neurocrit Care 2009;10:403-7

Systematic Review

• Hoffman et al. (2007)

Study	Excluded	Imipenem	Meropenem		
Туре	Sz Dx?	Seizures/All patients (%)	Seizures/All patients (%)		
RCT 1	Yes	1/91	0/87		
RCT 2	Yes	0/98	0/106		
RCT 3	Yes	2/75	2/76		
RR (*88)	No	52/1754			
RR ('99)	Yes	10/1802	22/4748		
RR ('99)	Yes	10/1375	19/2790		
PS ('93)	No	4/1951			
Total		79/7146 (1.1%)	43/7807 (0.55%)		

RR = Retrospective Review, PS = Prospective Study

Limitations

- Review article
- Summarizing safety data low level of evidence
- Most of the studies exclude patients with seizure disorders
- Some studies simply use "adverse events" as a blanket term

Back to Clinical Question 1

- Cannot conclude from available data whether imipenem actually predisposes patients to a higher risk of seizures than meropenem
- Risk factors for imipenem-induced seizures are:
 - Low weight
 - Renally impaired
 - Non-adjusted doses for renal function
- Using meropenem over imipenem in pts with seizure disorders may be safer
- Cost is similar (\$97.52 Imi vs \$146.1 Mero per day)

Back to Case - Nov. 18

- MH is still receiving meropenem 1g iv q8h for a polymicrobial bacteremia
- Plan is for a two-week course (Nov. 8-22)
- VPA level ordered for Nov. 18 because of suspicion of interaction
 - Level on Nov. 8 was 237umol/L, but pt had missed
 3 previous doses due to ER admission
 - Pt had a previous steady-state level from a previous admission

VPA Levels

Clinical Question 2

• Does meropenem cause a reduction in valproic acid levels, and what is the clinical significance of this interaction?

Meropenem-Valproic Acid Interaction

- Proposed mechanism:
 - Carbapenems increase UDP-GA levels, thus enhancing VPA glucuronidation
- Other, less supported mechanisms:
 - Increased renal clearance of VPA-Glu
 - Increased VPA uptake into erythrocytes

Literature Search

- Databases searched:
 - Pubmed, Embase, MedLine, Google Scholar, and bibliographies of relevant articles
- Search terms:
 - Meropenem, imipenem, carbapenems, valproic acid, interaction
- Found:
 - 1 retrospective study
 - 13 case reports

Interaction Between Valproate and Meropenem: A Retrospective Study

Spriet et al Ann Pharmacother 2007;1130-6

Meropenem-VPA Interaction

- Spriet et al. (2007)
 - Retrospective 18-month chart review (Jan 2004 June 2005)
 - Assessed patients who received both meropenem and valproic acid
 - Obtained clinical records, lab results, EEG recordings, demographics, and medications (including doses, durations and indications)
 - Outcomes included:
 - PK interaction (valproic acid levels)
 - Clinical interaction (increased EEG epileptic discharges, and/or clinical deterioration of seizure activity)

Meropenem-VPA Interaction

- Spriet et al. (2007)
 - Results:
 - 39 patients met inclusion criteria in study period
 - Mean daily valproic acid dose = $1.6 \pm 0.68g$ We saw an
 - Mean daily meropenem dose = $2.67 \pm 1.4g$ **87% decrease**

	Mean VPA Lev	Decrease	
	Pre-combo During combo		
VPA, then Mero (n=29)	446 ± 146	156 ± 83	66 ± 17%
Mero, then VPA (n=10)	N/A	81.8 ± 69	

Meropenem-VPA Interaction

- Spriet et al. (2007)
 - Results:
 - Chronicity:
 - VPA levels dropped within 24 hours of combination
 - Levels took, on average, 8 days to become therapeutic again
 - Data were only sufficient to assess clinical relevance of the interaction in 20 patients:
 - 11/20 patients showed electroclinical deterioration:
 - » 9/20 experienced increased seizure activity
 - » 7/20 showed increased epileptic discharges
 - » 5/20 showed increase in both outcomes

Limitations

- Retrospective design
- Lack of control subjects
- Free VPA levels were not assessed
- Methodology a bit unclear
- Insufficient data to evaluate all eligible patients
 - EEG recordings, clinical disease progression, recordings of seizures

Summary of Case Reports

Table 1. Overview of Published Case Reports								
Reference	Pt. Age, y	Daily VPA Dose	Type of Carbapenem	Interaction Duration, d	Effect on VPA Concentration, %	Outcome		
Nagai (1997)²	10 8	8.3 mg/kg tid 500 mg	panipenem panipenem	8 10	-93.5 -95	seizures on day 13 no acute seizures		
De Turck (1998) ³	65 57	1200 mg not known	meropenem meropenem	switch PHT not known	not known –60	seizures on day 2 no acute seizures		
Yamagata (1998)⁴	3 22 4	35 mg/kg/day 32 mg/kg/day 25 mg/kg/day	panipenem panipenem panipenem	1 –65 12 –76 not known –58.5		seizures on day 3 seizures on day 2 no acute seizures		
Llinares (2003)⁵	28 71 24	1600 mg 1500 mg 1600 mg	imipenem meropenem meropenem	not known not known not known	–70 –75 not known	no acute seizures seizures on day 9 no acute seizures		
Nacarkucuk (2004) ⁶	14 7 mo 14 mo	50 mg/kg/day 75 mg/kg/day 75 mg/kg/day	meropenem meropenem meropenem	7 3 3	-47.5 -75.5 -84.7	no acute seizures no acute seizures no acute seizures		
Clause (2005) ⁷	30 77	3600 mg/day 24 mg/kg/day	meropenem meropenem	not known not known	–72 not known	no acute seizures no acute seizures		
Coves-Orts (2005) ⁸	21	1000 mg	meropenem	5	-20.1	seizures on day 2		
Lam (2005) ⁹	21	1920 mg	meropenem	not known	not known	myoclonia on day 2		
Santucci (2005) ¹⁰	9.5	600 mg	meropenem	not known	64	seizures on day 5		
Perea-Falomir (2006) ¹¹	46	1200 mg	imipenem	not known	not applicable	seizures on day s 1 and 2		
Cabanes-Mariscal (2006) ¹²	80	1100 mg	ertapenem	not known	-49	no acute seizures		
Fudio (2006) ¹³	50	2750 mg	meropenem	17	85	myoclonia on day 5		
Spriet (2007) ¹⁴	60 54	32 mg/kg/day 28 mg/kg/day	meropenem	not known not known	65 56	no acute seizures no acute seizures		

PB = phenobarbital; PHT = phenytoin; VPA = valproate.

Back to Clinical Question 2

- Evidence available makes it hard to come to a definitive conclusion
- Pharmacokinetic interaction exists
- Clinically significant interaction is definitely possible; however, actual incidence and severity is unknown
- In the interest of safety, it is reasonable to avoid concurrent administration of VPA and meropenem

Recommendation

- Increase valproic acid dose to 500mg tid for 4 days
- Maintain meropenem for course of therapy as per polymicrobial, multi-drug resistant infection
 - Source of infection still unclear
- Reduce valproic acid dose back to 250mg bid, 500mg qhs Nov. 26

Monitoring

Outcome	Observation	Timeline	By Who
Seizures	Myoclonic activity, facial jerks	Daily	Nurse, Physician
Infxn eradication	Negative blood cultures, T, WBC, HD stability	Nov. 22	Physician, Pharmacist
VPA SE's	Drowsiness, rash, headache, N/V/D	Daily	Physician, Pharmacist
VPA Levels	Return to therapeutic range	1 week	Physician, Pharmacist
ICU discharge	Hemodynamic stabilization	Daily	Physician, Nurse

What Actually Happened

- VPA dose was increased to 500mg tid (1000mg/day to 1500mg/day)
- Meropenem dose was maintained for duration of antibiotic therapy (until Nov. 22)
- No seizures were noted during meropenem therapy
- Patient was discharged back to GPC Nov. 22

 VPA dose was recommended to be decreased back to baseline shortly after discharge

Conclusion

On day 50, administration of MEPM was stopped on the advice of the Clinical Pharmacology Service. The last episode of seizures was reported that day.

• As pharmacists, we can play a role in preventing seizures by being aware of this interaction

References

- 1. Hoffmann J, Trimble J, Brophy G. Safety of imipenem/cilastatin in neurocritical care patients. Neurocrit Care 2009; 10: 403-7.
- 2. Spriet I, Goyens J, Meersseman W, Wilmer A, Willems L, Van Paesschen W. Interaction between valproate and meropenem: a retrospective study. Ann Pharmacother 2007;41:1130-6
- 3. Mori H, Takahashi K, Mizutani T. Interaction between valproic acid and carbapenem antibiotics. Drug Metabolism Reviews 2007; 39: 647-57.
- 4. Horn JR, Hansten PD, Chan LN. Proposal for a new tool to evaluate drug interaction cases. Ann Pharmacother 2007;41:674-80.
- 5. Yamamura, N., Imura-Miyoshi, K., Naganuma H. (2000). Panipenem, a carbapenem antibiotic, increases the level of hepatic UDP-glucuronic acid in rats. *Drug. Metab. Dispos.* 28:1484–1486.
- Yokogawa, K., Iwashita, S., Kubota, A., Sasaki Y., Ishizaki, J., Kawahara, M., Matsushita, R., Kimura, K., Ichimura, F., Miyamoto, K. (2001). Effect of meropenem on disposition kinetics of valproate and its metabolites in rabbits. *Pharm. Res.* 18:1320–1326.
- 7. Ogawa, K., Yumoto, R., Hamada, N., Nagai, J., Takano, M. (2006) Interaction of valproic acid and carbapenem antibiotics with multidrug resistance-associated proteins in rat erythrocyte membranes. *Epilepsy Res.* 71:76–87.

Questions?

RCT - Verwaest et al (1999)

- Method: Multicenter, open-label RCT
- Intervention: Imipenem/Cilastatin 1g q8h
- Comparator: Meropenem 1g q8h
- Population: 212 ICU pts with presumed LRTI, IAI, or sepsis (empiric therapy)
- Outcomes: % of pts with satisfactory response
- Results: 77% Mero vs 68.1% Imi (p=0.185)
- Seizures: Excluded CNS conditions, 1 seizure with imipenem/cilastatin

RCT - Colardyn et al (1996)

- Multicentre, open-label, Ran. Phase III trial
- Hospitalized pts requiring iv abx for serious infxns (IAI, SSTI, LRTI, UTI, sepsis)
- Meropenem vs. Imipenem 1g iv q8h
- N=204, Outcome = % clinical response
- 76% Mero vs 77% Imipenem (no p value)
- Safety was assessed, but no mention of seizures

RCT - Garau et al (1997)

- Multicentre, open-label RCT
- Pts requiring iv abx for serious infxns (various)
- Meropenem vs Imipenem 1g q8h
- N = 151, excluded seizure disorders
- Outcome = clinical response rate per infxn
- 87% Meropenem vs. 74% Imipenem (NSS)
- 2 seizures in meropenem group, 2 seizures in imipenem group

Summary of Patients with Interaction

Table 3. Clinical Correlations in Patients with Electroclinical Deterioration											
Correlation	Pt. 1	Pt. 2	Pt. 3	Pt. 4	Pt. 5	Pt. 6	Pt. 7	Pt. 8	Pt. 9	Pt. 10	Pt. 11
VPA level before start of MPN	119	61	NA	NA	42	NA	61	41	NA	84	65
VPA level after start of MPN	34	23	7	5	21	20	21	4	37	41	26
Neurologic status before MPN–VPA	no sei- zures	SSE	SSE	GTCS + SSE	CPSE	coma	SSE	no seizures	coma	SSE	SSE
Neurologic status during MPN–VPA	îî sei- zures	SSE	SSE	SSE	CPSE	coma	SSE, ↑ myoclonic jerks	GTCS	coma	SSE	SSE, ↑blinking + tonic eye deviation
Neurologic status after MPN–VPA	↓ sei- zures	↓ blinking	↓blinking	↑ con- scious	↑ con- scious	1 con- scious	↑ con- scious	no sei- zures	coma	SSE	↑ conscious
EEG before MPN–VPA	no EEG	BR 3 E +	BR 1 E –	BR 1 E –	BR 2 E +	BR 2 E + (SE)	BR 1 E –	BR 2 E –	BR 2 E +	BR 1 E –	burst sup- pression, E +
EEG during MPN–VPA	no EEG	BR3 EÎ	BR 1 E+	BR 1 E –	BR 2 E↑	BR 2 E ↑(SE)	BR 1 E –	BR 2 E –	BR2 EÎ	BR 2 E+	burst sup- pression, E ↑↑
EEG after MPN–VPA	no EEG	BR 3 E –	BR 1 E –	BR 1 E –	BR 2 E –	BR 2 E –	BR 1 E –	BR 2 E –	BR 2 E –	BR 3 E –	BR 2 E↓

BR = background rhythm (1 = severely slowed, 2 = moderately slowed, 3 = mildly slowed); CPSE = complex partial status epilepticus; E = epileptic discharges (+ = present, - = absent, \uparrow = increase, \downarrow = decrease); EEG = electroencephalogram; GTCS = generalized tonic-clonic seizure; MPN = meropenem; NA = not applicable; SE = status epilepticus; SSE = subtle status epilepticus; VPA = valproate.